Math 522 Exam 7 Solutions

1. Find \tilde{a}, the inverse of a modulo c, when $a=10$ and $c=123$.

We will use the Euclidean algorithm to find a solution to $10 x+123 y=1$; then x will be the answer we seek. First, we have $123=12 \cdot 10+3$. Second, we have $10=3 \cdot 3+1$. Reversing, we have $1=10-3 \cdot 3=10-3 \cdot(123-12 \cdot 10)=$ $-3 \cdot 123+37 \cdot 10$. Hence the desired $\tilde{a}=37$.
2. Let $m \in \mathbb{Z}$ with $m>2$. Let $\left\{r_{1}, r_{2}, \ldots, r_{\phi(m)}\right\}$ be a reduced residue system modulo m. Prove that $r_{1}+r_{2}+\cdots+r_{\phi(m)} \equiv 0(\bmod m)$.

Note that r_{i} is in the r.r.s. if and only if $\operatorname{gcd}\left(r_{i}, m\right)=1$, if and only if $\operatorname{gcd}\left(-r_{i}, m\right)=1$, if and only if there is some r_{j} in the r.r.s. with $r_{j} \equiv-r_{i}(\bmod m)$. In particular, $r_{i}+r_{j} \equiv 0$ $(\bmod n)$. If we can pair off the entire r.r.s. this way, we are done; however, it might be possible that $r_{i}=r_{j}$.
We will now prove that $r_{i} \equiv-r_{i}(\bmod m)$ is impossible, for any i. Suppose otherwise. This holds if and only if $2 r_{i} \equiv 0$ $(\bmod m)$, if and only if $m \mid 2 r_{i}$. But $\operatorname{gcd}\left(m, r_{i}\right)=1$, so $m \mid 2$, which is impossible.
Hence, we may rearrange the r.r.s. so that $r_{2} \equiv-r_{1}, r_{4} \equiv$ $-r_{3}, \ldots$. We now have $r_{1}+r_{2}+\cdots \equiv\left(r_{1}+r_{2}\right)+\left(r_{3}+r_{4}\right)+\cdots \equiv$ $0+0+\cdots+0 \equiv 0(\bmod m)$.

